
Galerkin FEM Stabilization Limiting Data projections Turbulent flows Two-phase flows Moving boundaries Summary

FINITE ELEMENT METHODS
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finite element discretization of convection-diffusion equations
artificial diffusion, Petrov-Galerkin and Taylor-Galerkin methods
discontinuity capturing terms, flux-corrected transport algorithm
incompressible Navier-Stokes equations, k − ε turbulence model
application to two-phase flows and moving boundary problems
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Conservation laws

Concentration of a scalar quantity

u = u(x, t), x ∈ Ω, t ≥ 0

PDE form of the conservation law

∂u
∂t +∇ · f(u) = 0 in Ω× R+

Convective and diffusive transport

f(u) = vu − d∇u, Pe =
|v|L
d
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Transport equations

Convection-diffusion equation

∂u
∂t +∇ · (vu − d∇u) = 0 in Ω× R+

Initial condition
u|t=0 = u0 in Ω

Boundary conditions

u|Γ1 = g1, (vu − d∇u) · n|Γ2 = g2
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A priori bounds

Parabolic boundary

Σ = {(x, t) | x ∈ Γ ∨ t = 0}

Maximum principle

∇ · v = 0 ⇒ min
Σ

u ≤ u ≤ max
Σ

u

Positivity preservation

u|Σ ≥ 0 ⇒ u ≥ 0 in Ω× R+
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Weighted residuals

Method of weighted residuals∫
Ω

w
[
∂u
∂t +∇ · f(u)

]
dx = 0, w |Γ1 = 0

Integration by parts∫
Ω

w∇ · f dx =

∫
Γ

w f · n ds −
∫

Ω

∇w · f dx

where

f = vu − d∇u,
∫

Γ

w f · n ds =

∫
Γ2

wg2ds
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Galerkin discretization

Continuous problem: find u ∈ V s.t.

d
dt (w , u) + a(w , u) = b(w), ∀w ∈ V

where
a(w , u) = −

∫
Ω

∇w · (vu − d∇u) dx

b(w) = −
∫

Γ2

wg2ds, (w , u) =

∫
Ω

wu dx

Finite element approximation

uh(x, t) =
∑

j
uj(t)ϕj(x), x ∈ Ω, t ≥ 0
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Galerkin discretization

Semi-discrete problem: find uh ∈ Vh s.t.

d
dt (wh, uh) + a(wh, uh) = b(wh), ∀vh ∈ Vh

System of linear algebraic equations∑
j

(ϕi , ϕj)
duj
dt +

∑
j

a(ϕi , ϕj)uj = b(ϕi ), ∀i

Matrix form of the initial value problem

MC
du(t)

dt + Au(t) = b(t), u(0) = u0
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Convection-diffusion in 1D

Central differences / Galerkin FEM, forward Euler time-stepping
ut + ux = duxx , ∆x = 10−2, ∆t = 10−3
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Convection-diffusion in 1D

Central differences / Galerkin FEM, forward Euler time-stepping
ut + ux = duxx , ∆x = 10−3, ∆t = 10−4
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Stabilized FEM

Mainstream stabilization techniques

discretize convective terms using an upwind-biased scheme
use modified test functions in the variational formulation
add streamline diffusion and discontinuity-capturing terms
use a time-stepping scheme that provides intrinsic stability

High-resolution finite element schemes

1 add enough artificial diffusion to suppress spurious wiggles
2 decompose the added term into a sum of numerical fluxes
3 use limited antidiffusive fluxes to recover high accuracy
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Artificial diffusion

Modification of the variational formulation

ã(w , u) := a(w , u) + s(w , u)

Modification of the finite element matrix

Ã := A + D

Sufficient conditions of positivity preservation∑
j

ãij ≥ 0, ãij ≤ 0, ∀j 6= i

Desired properties: consistency, mass conservation
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Isotropic diffusion

Variational stabilization

s(w , u) =

∫
Ω

∇w · (D∇u) dx

Isotropic balancing dissipation

D = δI, δ = α

(
|v|h
d

)
|v|h
2

Stabilization parameter

α(p) = coth
(p
2

)
− 2

p
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Streamline diffusion

Anisotropic balancing dissipation

D = τv⊗ v, τ =
δ

|v|2

Streamline diffusion stabilization

s(w , u) =

∫
Ω

τ(v · ∇w)(v · ∇u) dx

Upwind-biased test functions∫
Ω

w(v · ∇u) dx + s(w , u) =

∫
Ω

w̃(v · ∇u) dx

w̃ = w + τv · ∇w

Brooks & Hughes (1982), Johnson (1987)
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Petrov-Galerkin methods

Steady convection-diffusion equation

Lu = ∇ · (vu − d∇u) = 0

Standard variational formulation

a(w , u) = b(w), ∀w ∈ V

Stabilized variational formulation

a(w̃ , u) = b(w̃), w̃ = w + τPw
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Petrov-Galerkin methods

Consistent variational stabilization

s(w , u) =

∫
Ω

τPwLu dx

Streamline Upwind Petrov-Galerkin (SUPG) method

Pw = v · ∇w

Galerkin Least Squares (GLS) method

Pw = Lw

Brooks & Hughes (1982), Hughes et al. (1989)
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Taylor-Galerkin methods

Unsteady convection-diffusion equation

∂u
∂t + Lu = 0, Lu = ∇ · (vu − d∇u)

Time discretization using the Taylor series

un+1 = un + ∆tun
t +

(∆t)2

2 un
tt + . . .

Elimination of time derivatives using the PDE

ut = −Lu, utt = (ut)t = −Lut = L2u, . . .

Donea (1984), Donea et al. (1987)
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Lax-Wendroff method

Truncated Taylor series expansion

un+1 − un

∆t + Lun− ∆t
2 L

2un = 0

Semi-discrete variational formulation(
w , u

n+1 − un

∆t

)
+ ã(w , un) = b(w)

where
ã(w , u) = a(w̃ , u), w̃ = w − ∆t

2 L
∗w
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Third-order TG method

Time discretization using the Taylor series

un+1 = un + ∆tun
t +

(∆t)2

2 un
tt +

(∆t)3

6 un
ttt +O(∆t4)

uttt = (utt)t = L2ut = L2
(
un+1 − un

∆t

)
+O(∆t)

Semi-discrete variational formulation(
w , u

n+1 − un

∆t

)
TG

+ ã(w , un) = b(w)

(w , u)TG = (w , u)− ∆t
6 (L∗w ,Lu)
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Case study

Pure convective transport

Lu = ∇ · (vu), L∗w = −v · ∇w

Taylor-Galerkin stabilization

−(L∗w ,Lu) =

∫
Ω

(v · ∇w)(v · ∇u) dx+

∫
Ω

(v · ∇w)(u∇ · v) dx

Upper bound for the time step

|v|∆t
h ≤ C < 1
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Pure convection in 1D

Lax-Wendroff / Taylor-Galerkin method, P1 elements
ut + ux = 0, ∆x = 10−2, ∆t = 5 · 10−3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Initial

Exact

LW

TG

smooth solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Initial

Exact

LW

TG

discontinuous solution

20 Dmitri Kuzmin FEM for convection-dominated transport and incompressible flow problems



Galerkin FEM Stabilization Limiting Data projections Turbulent flows Two-phase flows Moving boundaries Summary

Problems with steep fronts

Linear stabilization techniques

Petrov-Galerkin /Taylor-Galerkin methods work well for smooth data

spurious undershoots/overshoots occur if the gradients are too steep

Nonlinear high-resolution schemes

are stable and at least second-order accurate in smooth regions

add extra numerical diffusion in the vicinity of steep gradients

respect relevant properties of the exact solution (conservation,

positivity, monotonicity, non-increasing total variation, . . . )
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Discontinuity capturing

Solution-dependent artificial diffusion

s̃(w , u) := s(w , u) + c(w , u)

where
c(w , u) =

∫
Ω

ν(u)∇w · ∇u dx

Residual-based shock-capturing viscosity

ν(u) =

{
τ̂
(
R(u)
|∇u|

)2
if |∇u| 6= 0

0 if |∇u| = 0

Hughes & Mallet (1986), Codina (1993)
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Modulated dissipation

Linear system for an explicit scheme

MCun+1 = MCun + rn

Mass lumping in the left-hand side

ML = diag{mi}, mi =
∑

j
mij

MLun+1 = MCun + rn = MLun + rn + (MC −ML)un

⇔ MCun+1 − (MC −ML)un+1 = MCun + rn

Nonoscillatory for sufficiently small time steps

Selmin (1987), Donea et al. (1988)
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Modulated dissipation

Conservative flux decomposition

(MCu −MLu)i =
∑

j
mijuj −miui =

∑
j 6=i

mij(uj − ui )

Selective mass lumping

m̃ij = αijmij , 0 ≤ αij ≤ 1

m̃ii = mii +
∑
j 6=i

(1− αij)mij

Modified linear system

M̃Cun+1 = MCun + rn
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Flux-corrected transport

1 High and low-order approximations

uH
i = uL

i +
∆t
mi

∑
j 6=i

fij , fji = −fij

2 Limited antidiffusive correction

uFCT
i = uL

i +
∆t
mi

∑
j 6=i

αij fij , αji = αij

such that uFCT
i ≤ umax

i := max{uL
j |mij 6= 0}

uFCT
i ≥ umin

i := min{uL
j |mij 6= 0}

Boris & Book (1972), Zalesak (1979)
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Flux-corrected transport

Criterion for the computation of correction factors

umin
i ≤ uL

i +
∆t
mi

∑
j 6=i

αij fij ≤ umax
i

Separate treatment of positive and negative fluxes∑
j 6=i

αij max{0, fij} ≤ f max
i :=

mi
∆t (umax

i − uL
i )

∑
j 6=i

αij min{0, fij} ≥ f min
i :=

mi
∆t (umin

i − uL
i )

Limited antidiffusion is local extremum diminishing
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Zalesak’s FCT limiter

Sums of positive and negative fluxes

f +
i =

∑
j 6=i

max{0, fij}, f −i =
∑
j 6=i

min{0, fij}

Nodal correction factors

α+
i := min

{
1, f max

i /f +
i
}

s.t. α+
i f +

i ≤ f max
i

α−i := min
{
1, f min

i /f −i
}

s.t. α−i f −i ≥ f min
i

Symmetric limiting strategy

αij =

{
min

{
α+

i , α
−
j
}

if fij > 0
min

{
α−i , α

+
j
}

if fij < 0
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Pure convection in 1D

First-order upwind method, forward Euler time-stepping
ut + ux = 0, ∆x = 10−2, ∆t = 5 · 10−3
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Pure convection in 1D

Lax-Wendroff / Taylor-Galerkin FCT method, P1 elements
ut + ux = 0, ∆x = 10−2, ∆t = 5 · 10−3
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Algebraic flux correction

Algebraic splitting of the semi-discrete scheme

MC
du
dt + Au = b ⇔ ML

du
dt + Ãu = b + f (u)

Positivity-preserving low-order approximation

ML
du
dt + Ãu = b, Ã := A− D

Antidiffusive part of the high-order approximation

f (u) = (ML −MC )
du
dt − Du
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Enforcing positivity

Coefficients of the artificial diffusion operator

dii = −
∑
j 6=i

dij , dij := max{aij , 0, aji}, j 6= i

Decomposition of the antidiffusive part into fluxes

fij =

[
mij

d
dt + dij

]
(ui − uj) = −fji , j 6= i

Algebraic flux correction using an FCT-like limiter

ML
du
dt + Ãu = b + f̄ (u), f̄i =

∑
j 6=i

αij fij
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Predictor-corrector FCT

1 Calculate uL ≈ un+1 using the low-order scheme[
1

∆t ML + θÃ
]
uL =

[
1

∆t ML − (1− θ)Ã
]
un + b, θ ∈ (0, 1]

2 Linearize the raw antidiffusive fluxes about uL

fij := mij(u̇L
i − u̇L

i ) + dij(uL
i − uL

j ), u̇L
i = M−1C [b − AuL]

3 Add the sum of limited antidiffusive fluxes to uL

un+1
i = uL

i +
∆t
mi

∑
j 6=i

αij fij , αij ∈ [0, 1]
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Iterative flux correction

Residual of the nonlinear system

r(u) =

[
1

∆t ML − (1− θ)Ã
]
un + b −

[
1

∆t ML + θÃ
]
u + f̄ (u)

Defect correction scheme

P(u(m−1))[u(m) − u(m−1)] = r(u(m−1)), m = 1, 2, . . .

Fixed-point iteration[
1

∆t ML + θÃ
]
u(m) =

[
1

∆t ML − (1− θ)Ã
]
un + b + f̄ (u(m−1)
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Solid body rotation

Galerkin scheme / Q1 elements, Crank-Nicolson time-stepping
∂u
∂t +∇ · (vu) = 0, h = 1/128, ∆t = 10−3

initial/exact solution, t = 2πk

v=(0.5−y,x−0.5)

(0,0) (1,0)

(0,1)

domain and velocity
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Solid body rotation

Galerkin scheme / Q1 elements, Crank-Nicolson time-stepping
∂u
∂t +∇ · (vu) = 0, h = 1/128, ∆t = 10−3

initial/exact solution, t = 2πk Galerkin solution, t = 2π
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Solid body rotation

Galerkin scheme / Q1 elements, Crank-Nicolson time-stepping
∂u
∂t +∇ · (vu) = 0, h = 1/128, ∆t = 10−3

initial/exact solution, t = 2πk low-order solution, t = 2π
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Solid body rotation

Galerkin scheme / Q1 elements, Crank-Nicolson time-stepping
∂u
∂t +∇ · (vu) = 0, h = 1/128, ∆t = 10−3

initial/exact solution, t = 2πk FEM-FCT solution, t = 2π
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Solid body rotation

Galerkin scheme / Q1 elements, Crank-Nicolson time-stepping
∂u
∂t +∇ · (vu) = 0, h = 1/128, ∆t = 10−3

initial/exact solution, t = 2πk FEM-FCT solution, t = 2π
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Comparative study

Solid body rotation: FEM-FCT vs. variational stabilization techniques
(John & Schmeyer, Comput. Methods Appl. Mech. Engrg. 2008)

spaces Vh=Dh
¼ Pbubble

1 =P0 and Vh=Dh
¼ Qbubble

1 =P0, i.e. the standard

spaces P1; Q1 have to be enriched with bubble functions.

In all simulations with SUPG and SOLD schemes, the parameter

hK was chosen to be the mesh width of the mesh cell K in the direc-

tion of the convection, see the remark at the end of Section 3. The

length of the mesh cell in the direction of the convection can be

easily approximated, see [55,34]. The SUPG parameters (9)–(11)

were scaled with the factor 1.

The non-linear problems for most of the SOLD methods and the

non-linear FEM-FCT method were solved in each discrete time up

to the Euclidean norm of the residual vector less than 10ÿ9. A sim-

ple fixed point iteration was employed, see [36], with a fixed

damping factor. Damping was only applied if the method without

damping diverged (a blow-up occurred) or if it did not converge

(the non-linear problems could not be solved to the required accu-

racy). In applications, it is of advantage if a method works without

a sophisticated choice of the damping factor. We considered damp-

ing factors from the set {1,0.75,0.5,0.25}, where we started with

the largest factor. Only if the non-linear iteration did not work

for the given factor, the simulations were repeated with the next

Fig. 8. Body rotation problem, the computed solution with P1 (or P
bubble
1 =P0 for the LPS scheme) at t ¼ 6:28; the linear schemes SUPG (11) [42,49], JWS87 [41], LPS scheme [50]

with C ¼ 0:01, C ¼ 0:1, C ¼ 1, FEM-FCT linear [43]; from top left to bottom right.

V. John, E. Schmeyer / Comput. Methods Appl. Mech. Engrg. 198 (2008) 475–494 485

SUPG (Hughes et al.)
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1 =P0 and Vh=Dh
¼ Qbubble

1 =P0, i.e. the standard

spaces P1; Q1 have to be enriched with bubble functions.

In all simulations with SUPG and SOLD schemes, the parameter

hK was chosen to be the mesh width of the mesh cell K in the direc-

tion of the convection, see the remark at the end of Section 3. The

length of the mesh cell in the direction of the convection can be

easily approximated, see [55,34]. The SUPG parameters (9)–(11)

were scaled with the factor 1.

The non-linear problems for most of the SOLD methods and the

non-linear FEM-FCT method were solved in each discrete time up

to the Euclidean norm of the residual vector less than 10ÿ9. A sim-

ple fixed point iteration was employed, see [36], with a fixed

damping factor. Damping was only applied if the method without

damping diverged (a blow-up occurred) or if it did not converge

(the non-linear problems could not be solved to the required accu-

racy). In applications, it is of advantage if a method works without

a sophisticated choice of the damping factor. We considered damp-

ing factors from the set {1,0.75,0.5,0.25}, where we started with

the largest factor. Only if the non-linear iteration did not work

for the given factor, the simulations were repeated with the next

Fig. 8. Body rotation problem, the computed solution with P1 (or P
bubble
1 =P0 for the LPS scheme) at t ¼ 6:28; the linear schemes SUPG (11) [42,49], JWS87 [41], LPS scheme [50]

with C ¼ 0:01, C ¼ 0:1, C ¼ 1, FEM-FCT linear [43]; from top left to bottom right.

V. John, E. Schmeyer / Comput. Methods Appl. Mech. Engrg. 198 (2008) 475–494 485

SD-FEM (Johnson et al.)
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Comparative study

Solid body rotation: FEM-FCT vs. variational stabilization techniques
(John & Schmeyer, Comput. Methods Appl. Mech. Engrg. 2008)

The numerical studies are restricted to low order finite ele-

ments. This has several reasons. To our best knowledge, most of

the SOLD methods and the LPS scheme have not yet been studied

for time-dependent scalar convection–diffusion–reaction equa-

tions. Thus, it is natural to perform the first studies with the sim-

plest finite elements. The final goal of our studies consists in

identifying schemes which can be used in applications like in

[39]. Many finite element codes which are used to simulate prob-

lems coming from applications are based on low order finite ele-

ments. For these reasons, apart from the LPS scheme, P1 finite

elements were used on triangular meshes and Q1 finite elements

on quadrilateral grids.

As mentioned in Section 5, the LPS scheme requires two finite

element spaces. The simplest large scale projection space Dh is

the space of piecewise constant functions. To obtain a well-posed

discrete problem, the fine scale finite element space Vh and the

large scale projection space have to obey an inf–sup condition,

see [51]. Unfortunately, this inf–sup condition is not satisfied by

the spaces Vh
¼ P1 or Vh

¼ Q1. Appropriate spaces which fulfill

the inf–sup condition have been identified in [51]. These are the

Fig. 7. Body rotation problem, the computed solution with Q1 at t ¼ 6:28; the non-linear schemes YZb [54,2] anisotropic, C93 [13] with C ¼ 0:1, C ¼ 0:5, C ¼ 1 and FEM-FCT

non-linear [45,44]; from top left to bottom.

484 V. John, E. Schmeyer / Comput. Methods Appl. Mech. Engrg. 198 (2008) 475–494

SUPG+SC (Bazilevs et al.)

The numerical studies are restricted to low order finite ele-

ments. This has several reasons. To our best knowledge, most of

the SOLD methods and the LPS scheme have not yet been studied

for time-dependent scalar convection–diffusion–reaction equa-

tions. Thus, it is natural to perform the first studies with the sim-

plest finite elements. The final goal of our studies consists in

identifying schemes which can be used in applications like in

[39]. Many finite element codes which are used to simulate prob-

lems coming from applications are based on low order finite ele-

ments. For these reasons, apart from the LPS scheme, P1 finite

elements were used on triangular meshes and Q1 finite elements

on quadrilateral grids.

As mentioned in Section 5, the LPS scheme requires two finite

element spaces. The simplest large scale projection space Dh is

the space of piecewise constant functions. To obtain a well-posed

discrete problem, the fine scale finite element space Vh and the

large scale projection space have to obey an inf–sup condition,

see [51]. Unfortunately, this inf–sup condition is not satisfied by

the spaces Vh
¼ P1 or Vh

¼ Q1. Appropriate spaces which fulfill

the inf–sup condition have been identified in [51]. These are the

Fig. 7. Body rotation problem, the computed solution with Q1 at t ¼ 6:28; the non-linear schemes YZb [54,2] anisotropic, C93 [13] with C ¼ 0:1, C ¼ 0:5, C ¼ 1 and FEM-FCT

non-linear [45,44]; from top left to bottom.

484 V. John, E. Schmeyer / Comput. Methods Appl. Mech. Engrg. 198 (2008) 475–494

SUPG+SC (Codina)
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Comparative study

Solid body rotation: FEM-FCT vs. variational stabilization techniques
(John & Schmeyer, Comput. Methods Appl. Mech. Engrg. 2008)
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Fig. 10. Body rotation problem, evolution of var(t) for the solutions computed with
Q1 (or Qbubble

1 /P0 for the LPS scheme).
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Fig. 11. Body rotation problem, evolution of var(t) for the solutions computed with
P1 (or P bubble

1 /P0 for the LPS scheme).

32

var(t) := max
x∈Ω

u(x, t)−min
x∈Ω

u(x, t) for Q1 and P1 elements

... and the winner is: FEM-FCT

“These were clearly the best schemes . . . ”
“a very good ratio of accuracy and efficiency”
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Comparative study

Solid body rotation: FEM-FCT vs. variational stabilization techniques
(John & Schmeyer, Comput. Methods Appl. Mech. Engrg. 2008)
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P1 (or P bubble

1 /P0 for the LPS scheme).

32

var(t) := max
x∈Ω

u(x, t)−min
x∈Ω

u(x, t) for Q1 and P1 elements

... and the winner is: FEM-FCT

“These were clearly the best schemes . . . ”
“a very good ratio of accuracy and efficiency”
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Data projections

It is essential to use conservative interpolation techniques for
initialization and projecting the data onto an adapted mesh

In the FEM context, the natural choice is the L2 projection∫
Ω

whuH
h dx =

∫
Ω

whu0 dx, ∀wh ∈ Vh

The matrix form of the above linear system is given by

MCuH = RHS

where MC = {
∫

Ω
ϕiϕj dx} and RHS = {

∫
Ω
ϕiu0 dx}
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Data projections

The consistent-mass L2 projection tends to produce ripples but the
discrete maximum principle holds for the lumped-mass version

MLuL = RHS

The mass lumping error admits a conservative flux decomposition

uH
i = uL

i +
1
mi

∑
j 6=i

fij , fij = mij(uH
i − uH

j )

We constrain the antidiffusive fluxes fij using the FCT algorithm

ui = uL
i +

1
mi

∑
j 6=i

αij fij , 0 ≤ αij ≤ 1

Löhner (2008)
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Data projections

Discontinuous initial data u0(x , y) =

{
2.0

√
x2 + y2 < 0.13

1.0 otherwise

Density
1.00 1.25 1.50 1.75 2.00

pointwise interpolation

Density
0.798 1.15 1.51 1.87 2.22

consistent L2 projection
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Data projections

Discontinuous initial data u0(x , y) =

{
2.0

√
x2 + y2 < 0.13

1.0 otherwise

Density
1.00 1.25 1.50 1.75 2.00

lumped-mass L2 projection

Density
1.00 1.25 1.50 1.75 2.00

constrained L2 projection
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Source term treatment

Convection-diffusion-reaction equation

∂u
∂t + Lu = s(u) in Ω× R+

Discretization of the source term

si =

∫
Ω

ϕis(u) dx, t > 0

Positivity-preserving linearization

si ≈ s+
i − s−i ui , s±i ≥ 0

Patankar (1980), Burchard et al. (2003)
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Coupling with CFD

Incompressible Navier-Stokes equations

∂u
∂t + u · ∇u = −∇p +∇ · ν(∇u +∇uT )

∇ · u = 0

System of scalar transport equations

∂cm
∂t +∇ · (ucm − dm∇cm) = s(c1, . . . , cM)

where
cm : Ω× R+ 7→ R, m = 1, . . . ,M
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Turbulent flows

Incompressible Navier-Stokes equations

∂u
∂t + u · ∇u = −∇p +∇ · (ν + νT )(∇u +∇uT )

∇ · u = 0, νT = Cµ
k2
ε

Equations of the k − ε turbulence model

∂k
∂t +∇ ·

(
uk − νT

σk
∇k
)

= Pk − ε

∂ε

∂t +∇ ·
(

uε− νT
σε
∇ε
)

=
ε

k (C1Pk − C2ε)
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Turbulent flows

Incompressible Navier-Stokes equations

∂u
∂t + u · ∇u = −∇p +∇ · (ν + νT )(∇u +∇uT )

∇ · u = 0, νT = Cµ
k2
ε

Equations of the k − ε turbulence model

∂k
∂t +∇ ·

(
uk − νT

σk
∇k
)

= Pk − γk, γ =
ε

k

∂ε

∂t +∇ ·
(

uε− νT
σε
∇ε
)

= γ(C1Pk − C2ε)
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Positivity of k and ε

Production and dissipation of turbulent kinetic energy

Pk =
νT
2 |∇u +∇uT |2, ε = γk, γ =

ε

k

Eddy viscosity and source term linearization parameter

νT = max{νmin, l∗
√
k}, γ = Cµ

k
νT

where l∗ is the limited mixing length

l∗ =

{
Cµ k3/2

ε if Cµk3/2 < εlmax

lmax otherwise
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Boundary layers

The standard k − ε model is invalid in the near-wall region, where
the Reynolds number is low and viscous effects are important

In low-Reynolds number models, exponential damping functions
are used to adjust the coefficients inside the boundary layer

The need for costly integration up to the wall can be avoided using
wall functions (analytical solutions to the boundary layer equations)

tw = −u2τ
u
|u| , k =

u2τ√
Cµ
, ε =

u3τ
κy

where y is distance from the wall and uτ is the friction velocity
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Wall functions

Derivation of natural boundary conditions

k =
u2τ√
Cµ

⇒ n · ∇k = −∂k
∂y = 0

ε =
u3τ
κy ⇒ n · ∇ε = − ∂ε

∂y =
u3τ
κy2 =

ε

y

Edge of the logarithmic layer and viscous sublayer

y =
y+ν

uτ
, y+ =

|u|
uτ

=
1
κ
log y+ + β

n · ∇ε =
εuτ
y+ν

, uτ = C0.25
µ

√
k

Grotjans & Menter (1998), DK et al. (2007)
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Finite element discretization

Finite element discretization

Au(u, νT )u + Bp = fu, BT u = 0

Ak(u, νT )k = fk , Aε(u, νT )ε = fε

Nonlinear algebraic system
Au B 0 0
BT 0 0 0
0 0 Ak 0
0 0 0 Aε




u
p
k
ε

 =


fu
0
fk
fε


Block-iterative solution strategy
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Nested loops

For n=1,2,... main time-stepping loop

For k=1,2,... outer coupling loop

Solve Au(u, νT )u + Bp = fu, BT u = 0

For l=1,2,... coupling of u and p
For m=1,2,... flux correction

Solve Ak(u, νT )k = fk , Aε(u, νT )ε = fε

For l=1,2,... coupling of k and ε
For m=1,2,... flux correction
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Navier-Stokes system

Discrete saddle point problem[
A B
BT 0

] [
u
p

]
=

[
f
0

]
where

A =
1

∆t M + θ(K − D)

Schur complement equation

u = A−1(f − Bp), BT u = 0

whence
BTA−1Bp = BTA−1f
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Stability condition

The Schur complement operator S = BTA−1B is invertible if

Ker B = {0}

This requirement restricts the choice of finite element spaces

Stable finite element pairs satisfy the Babuška–Brezzi condition

min
qh∈Qh

max
vh∈Vh

(qh,∇ · vh)

‖qh‖0 ‖∇vh‖0
≥ α > 0

Equal-order interpolations can be stabilized by adding extra terms
or using modified test functions in the variational formulation
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Navier-Stokes solver

Pressure Schur complement formulation

BTA−1Bp = BTA−1f, Au = f − Bp

Preconditioned Richardson’s iteration

p(l) = p(l−1) + C−1 BTA−1[f − Bp(l−1)]

C−1 ≈ [BTA−1B]−1, A =
1

∆t M + θ(K − D)

Additive Schur complement preconditioners

C−1 := αMC−1M + αKC−1K + αDC−1D

Turek (1995, 1999)
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Navier-Stokes solver

Usable preconditioner for unsteady flow problems

C−1 = C−1M , CM = ∆tBTM−1L B

Basic iteration of the PSC solver

p(l) = p(l−1)+[∆tBTM−1L B]−1BTA−1
[
f − Bp(l−1)

]
Fractional-step implementation

Au(l) = f − Bp(l−1), [BTM−1L B]q(l) =
1

∆t B
T u(l)

p(l) = p(l−1) + q(l), u = u(L) −∆tM−1L Bq(L)
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Navier-Stokes solver

Initialization: set p(0) = 0 or p(0) = pn at the first outer iteration

1 Given the pressure p(l−1), solve the “viscous Burgers” equation

Au(l) = f −∆tBp(l−1)

2 Given the velocity u(l), solve the “pressure Poisson” equation

BTM−1L Bq(l) =
1

∆t B
T u(l)

3 Add the pressure increment q(l) to the current approximation

p(l) = p(l−1) + q(l)
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Discrete projection

To enforce BT u = 0, perform the divergence-free L2 projection

u = u(L) −∆tM−1L Bq(L)

such that
BT u = BT u(l) −∆tBTM−1L Bq(l) = 0

This projection is a discrete form of the Helmholtz decomposition

ũ = u +∇q s.t. ∇ · u = 0

The matrix BTM−1L B is a mixed discretization of the Laplacian
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FeatFlow package

developed by the group of Stefan Turek in Dortmund
rotated multilinear approximation of the velocity u
piecewise-constant approximation of the pressure p

p

u,v

u,v

u,v

u,v

defect correction scheme for the Burgers equation
multigrid solvers for the pressure Poisson equation
source code available at http://www.featflow.de
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Backward facing step

3D simulation: steady-state distribution of k for Re = 47, 625

(a)

(b)

(c)

(d)

(a) reference solution, (b) DIRBC, (c) NEUBC, (d) LRKE
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Backward facing step

Chien’s model vs. wall functions implemented in strong and weak sense
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Turbulent bubbly flows
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Drift-flux model

Navier-Stokes equations + “Boussinesq” approximation

∂uL
∂t + uL · ∇uL = −∇p +∇ · νeff(∇uL +∇uT

L )− αg

∇ · uL = 0, uG = uL + uslip,
∂α

∂t +∇ · (uGα) = 0

additional transport equations for concentrations, k, ε etc

population balance models for the bubble size distribution

strongly coupled problem; positivity preservation is a must
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Flat bubble column
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Snapshots of the gas holdup distribution (3D simulation)
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Bubble size distribution

Population balance equation for f (x,m, t)

∂f (x,m, t)

∂t +∇ · (f (x,m, t) u) +
∂

∂m (f (x,m, t) ṁ) = Q − S

Source due to coalescence and breakup

Q(m, t) =

∫ ∞
m

r+
B (m,m′, t) dm′ +

1
2

∫ m

0
r+
C (m −m′,m′, t) dm′

Sink due to coalescence and breakup

S(m, t) = r−B (m, t) +

∫ ∞
0

r−C (m,m′, t) dm′
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Method of classes

Discretization of the bubble size distribution

mi = mmin2i−1, ∆mi = m+
i −m−i , i = 1, 2, . . . , n

m+
i = mi +

1
3 (mi+1 −mi ), m−i = mi −

2
3 (mi −mi−1)

Population balance for the number density fi (x, t)

∂fi (x, t)

∂t +∇ · (fi (x, t) ui ) +
∂

∂m (fi (x, t) ṁi ) = Qi − Si

Mass-conserving discretization of sources and sinks

Bayraktar et al. (2010)
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Coupling with CFD

Implementation of population balances in the FeatFlow package
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Turbulent pipe flow (3D)

Droplet size distribution and Sauter mean diameter, x = {0, 0.06, 0.18}
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Turbulent pipe flow (3D)

Holdup of small (top), medium (middle), and large (bottom) droplets
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Moving boundaries

Convection-diffusion in a domain of variable geometry

∂c
∂t +∇ · (uc − d∇c) = 0 in Ω(t)

Conservative Arbitrary Lagrangian-Eulerian formulation∫
Ωh(t)

wh

(
∂ch
∂t −∇wh · fh

)
dx +

∫
Γh(t)

whfh · n ds = 0

fh = (u− umesh)ch − d∇ch, wh ∈ Vh(t)

The flux fh · n is evaluated using natural boundary conditions
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Moving boundaries

Positivity-preserving low-order scheme[
Mn+1

L − ∆t
2 Ãn+1/2

]
cL =

[
Mn

L +
∆t
2 Ãn+1/2

]
cn + bn+1/2

Γ

Linearized raw antidiffusive fluxes

fij = mn+1
ij (ċL

i − ċL
j ) + dn+1

ij (cL
i − cL

j )

Limited antidiffusive correction

cn+1
i = cL

i +
∆t
mn+1

i

∑
j 6=i

αij fij
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Moving boundaries

Transport of a scalar quantity in a channel with moving walls

PARAMETERS

L[mm] 3.5
H[mm] 0.15
ρ[g/mm3] 1
µ[g/mm · s] 1
DP [g/mm2s2] 25
a[mm] H/20
dR[mm2/s] 10−3

vaver[mm/s] 7× 10−2

PeT 10.5

Table 6: Parameter values for the example in Section 4.4.

(a) Concentration at t = 0.3 sec (b) Concentration at t = 0.8 sec

(c) Concentration at t = 1.3 sec (d) Concentration at t = 4.8 sec

Figure 7: Pure convection on a moving domain. Snap-shots at 4 different times.

squeezing and expansion of the non-zero concentration shown in red as the
top boundary moves down and up, respectively. Dark red color corresponds
to concentration c = 1. Very small numerical diffusion can be observed. A
3D view of concentration corresponding to the solution at time t = 4.8 sec
is shown in Figure 8(a). A 2D slice through the middle of the domain at
y = H/2 is shown in Figure 8 (b). More precisely, Figure 8 (b) shows con-
centration versus x ∈ (0, 1) at time t = 4.8 sec for y = H/2. One can see no
oscillations in the solution with sharply resolved fronts. The relative mass
change in this simulation is less than 2× 10−5 %.

The same flow conditions were then used to simulate the solution of the
convection-diffusion problem with dR = 10−3 mm2/s. Figure 9 shows the be-
havior of concentration for L < 1 mm. This can be compared with the solute

27

Source: O. Boiarkine, D.K., S. Canic, G. Guidoboni, and A. Mikelic
A positivity-preserving ALE finite element scheme for convection-diffusion
equations in moving domains. J. Comput. Phys. (2010)
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Summary

In this lecture we

discretized convection-dominated transport equations using FEM

reviewed variational stabilization and shock capturing techniques

designed high-resolution schemes based on algebraic flux correction

constrained the L2 projection operator using selective mass lumping

considered a class of iterative methods for the Navier-Stokes system

addressed the numerical treatment of the k − ε turbulence model

solved incompressible flow problems on fixed and moving meshes
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