Numerical solution of differential equations

– example for illustration

The problem: $-y'' = 12x^2$, y(-3) = y(3) = 0

The goal: find the solution y(x) on $\langle -3, 3 \rangle$.

This is Poisson equation - can represent stationary heat or diffusion problem (or many others).

Exact solution - integrate twice and use the boundary conditions:

$$y(x) = 81 - x^4$$

The main steps of numerical solution

A) Discretization

1. Choose a step-size h and construct a mesh:

 $h = 1, x_{i+1} = x_i + h: -3 = x_0 < x_1 < \dots x_6 = 3$

- 2. Put together algebraic equations for unknowns $y_i \approx y(x_i)$ – approximate values of the solution at x_i
 - 2.1 Express the equation at every x_i inside (-3,3):

 $-y''(x_i) = 12x_i^2, \quad i = 1, \dots 5$

2.2 Substitute differences instead of derivatives:

$$y''(x_i) \approx \frac{y(x_{i-1}) - 2y(x_i) + y(x_{i+1})}{h^2} \approx \frac{y_{i-1} - 2y_i + y_{i+1}}{h^2}$$

to get a system of 5 (lin.) equations for 5 unknowns $y_1, \ldots y_5$:

$$-y_{i-1} + 2y_i - y_{i+1} = 12x_i^2$$
, $i = 1, \dots, 5, y_0 = y_6 = 0$

after substitution of values, in matrix form:

2	-1	0	0	0]	$\begin{bmatrix} y_1 \end{bmatrix}$		48
-1	2	-1	0	0	y_2		12
0	-1	2	-1	0	y_3	=	0
0	0	-1	2	-1	y_4		12
0	0	0	-1	2	y_5		48

B) Solving a system of algebraic equations

in our example we have linear system AY = B, where

 $A \dots$ an approximation of the given differential operator on some mesh, $Y \dots$ an approximation of values of the exact solution at mesh-points, $B \dots$ the right side of the equation and (Dirichlet) boundary conditions.

The numerical solution Y compared with exact solution $y(x_i)$:

$$Y = \begin{bmatrix} 60\\72\\72\\72\\60 \end{bmatrix}, \quad Y_{ex} = \begin{bmatrix} y(x_1)\\y(x_2)\\y(x_3)\\y(x_4)\\y(x_5) \end{bmatrix} = \begin{bmatrix} 65\\80\\81\\80\\65 \end{bmatrix}, \quad Y_{ex} - Y = \begin{bmatrix} 5\\8\\9\\8\\5 \end{bmatrix}$$

– about 10% error – not so bad on such a coarse mesh

Questions:

- Is the matrix A always regular?
- Does $Y \to Y_{ex}$ as $h \to 0$?
- How quick is the convergence?
- ...

C) Interpolation, approximation of discrete results by a continuous function (often not so important):

here the least square method for a polynomial of the 4-th degree was used

Our roadmap

We are going to learn:

- 1. Some methods for solving a system of algebraic equations
- 2. Interpolation, approximation minor topic (1 week)
- 3. Discretization of ODR, PDR the main theme