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Finite differences for second order linear PDE in 2 variables

Approximation of partial derivatives with finite differences

Consider a PDE with the state variables z and ¢ solved in a domain €.
Let us construct a rectangular grid of nodes over {2 with equal mesh spacing h in the z-direction

and equal mesh spacing 7 in the ¢-direction.

Scheme of the grid around a grid node PF:
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Notation:
PF = [z;,t;] ... grid nodes, where
x; ... x-coordinates of the nodes: h = x;41 — x;
tg ... t-coordinates of the nodes: 7 =1tp11 — 1t
u(z,t) ... function of two variables defined in Q, u(P}F) = u(x;, %)
Uk ~u(PF) ... approximate value of u(z,t) at a grid node P}

Partial derivatives then can be approximated as (see Figure 1)
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where
(1) the second central difference with respect to z,
(2) the second central difference with respect to ¢,
(3) the first forward difference with respect to ¢, and
(4) the first backward difference with respect to ¢
were used for approximation of the derivatives at the node Pik.
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Figure 1: Grid nodes used for finite differences centered at the node PF. Cases (1), (2), (3) and

(4) above, from left to right.
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Discretization of partial differential equations in 2D using finite differences
Discretization of PDE (inside the given domain) consists of the three following steps:
1. Choosing the step-size in both directions and constructing the grid.

2. Expressing the equation at every grid node (inside the domain).

3. Substitution of derivatives with the finite differences.

Caution: All terms of the equation have to be expressed or approximated at the same position.

Note: Discretization of initial and boundary conditions is not covered in this text.

Examples

1. Poisson equation
?u 9%u
—Au = Y, he Au = —5 + — ,
u flz,y) where Au 527 + 052
where both z and y are treated the same way (usually represent spatial directions).

e Choose the same step-size h in both directions x and y.
e Express the equation at every interior node PF = [z;, yx]:

0%u 9%u
—@(Pik) - Tyg(Pik) = f(PF)

e Use five-point stencil for discretization (see Figure 2), which represents substitution of second
derivatives with second central finite differences, using formulae (1) and (2):

U'ilil - QUZk + Uzk+1 Uik_l B 2U1k + Ui]H_l
e - = = Jwow) .

After rearrangig this leads to equation for 5 unknowns:

W = UFy = Uy = U = U = 12 faige) -

7 (2

The discretization is performed at every inner node, then a system of linear equations
for unknowns UF is obtained.

Figure 2: Discretization schemas, from left to right: five-point stencil, four-point stencil leading to
explicit method, four-point stencil leading to implicit method. The node, where the discretization
takes place, is indicated by a square.
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2. Heat transfer equation
ou  d%u
at P ox2

where variable ¢ represents time and x is spatial variable.

+ f(z,t) in the domain Q = (a,b) x (0,7T) ,

As z and t now represent different entities, different step-sizes h and 7 are used.

Numerical solution is evaluated one time level after another: from known values at the k-th
time level, values at (k + 1)-st time level are computed. (Assume that the starting, zero level is
prescribed by an initial condition.)

Explicit method
e Express the equation at the node PF = [z;,4]:

Ou py _ O%u b |
(Pi)_paxg(Pi)+f(x1atk)

e For discretization, use four-point stencil depicted in Figure 2, center, which represents substi-

tution of time derivative with first forward finite difference by formula (3) and space derivative
with second central difference by formula (1):

Uttt —ut Uf ., —2U0F + Ul

- =D 12 + f(xwtk) .

After rearrangig, the explicit formula is obtained:

Uttt =oUf 1+ (1= 20)UF + 0 Ul + 7 f(xi,tr) , where o = %

Computation of the (k + 1)-st time level is performed one value after another.

Implicit method
e Express the equation at the node Pf“ =[x, thy1):

T Pu

E( 7 ): amg( 7 )+f(xiatk?+1)

e For discretization, use four-point stencil depicted in Figure 2, right, which represents sub-
stitution of time derivative with first backward finite difference by formula (4) and space
derivative with second central difference by formula (1), both expressed at node Pf“:

Uktt —yk Ukl —ouktt 4 yktl
%ﬁ =p—= fZQ L+ f(witera) -

After rearrangig, this leads to equation for 3 unknowns at the (k + 1)-st time level:

pT

—o UM+ (1+20)UFT — UUi]f:’ll =UF + 7f(zistps1), whereo = 5

The discretization is performed at every inner node of the (k 4 1)-st time level, so a system of
linear equations is obtained, from which values at the (k + 1)-st time level can be computed.
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3. Wave equation

Pu 5 0%u
— =" — xz,t) in the domain Q = (a,b) x (0,7T) ,
= () (,0) x (0,7)
where variable ¢ represents time and x is spatial variable.
As x and t represent different entities, different step-sizes h and 7 are used.

Numerical solution is evaluated one time level after another: from known values at (k — 1)-st
and k-th time level, values at (k + 1)-st time level are computed. (Assume that the starting two
levels (zero and first) are computed from initial conditions.)

Explicit method

e Express the equation at the node PF = [z, 4]:

2 2
(Pl = D8P + (e 1)

e Use five-point stencil for discretization (see Figure 2) using formulae (1) and (2):

Uk~ —ouk 4 yktt Uk, —2UF + Uk
: T; i = 2 h; S f(wite) -

After rearrangig, the explicit formula is obtained:

Ut =6?Uf  +2(1-0*)UF +02Uf, — U + 7% f(w,t), where o = %—

Computation of the (k + 1)-st time level is performed one value after another.

4 © Certik



