
ODE – Theory for initial value problems ver. 10.4.2017

ODE – initial value (or Cauchy) problems – Theory

(excerpts from lectures)

First-order initial value problem

Y′(x) = F(x,Y(x)) with an initial condition Y(x0) = Y(0) , (1)

where

Y(x) =


y1(x)
y2(x)

...
yn(x)

 , Y′(x) =


y′1(x)
y′2(x)

...
y′n(x)

 , F(x,Y) =


f1(x, y1, y2, . . . , yn)
f2(x, y1, y2, . . . , yn)

...
fn(x, y1, y2, . . . , yn)


The system of (1) is called linear, if functions fi are linear with respect to all variables yj ,
i.e., they have the form

fi(x, y1, y2, . . . , yn) = gi0(x) + gi1(x) y1 + gi2(x) y2 + ...+ gin(x) yn , i = 1, . . . n . (2)

Existence and uniqueness of the (exact) solution

The standard theorem, which assumesformulates sufficient conditions for existence and uniqueness
of the solution of the initial value problem (1):

Theorem 1

Let functions fi be continuous in some region D defined by a ≤ x ≤ b, aj < yj < bj for j = 1, . . . n and
let F satisfy Lipschitz condition with respect to Y in D, i. e., there exists a constant L such that

‖F (x,Y)− F (x,Z)‖ ≤ L ‖Y − Z‖ ∀ (x,Y), (x,Z) ∈ D . (3)

Then for any (x(0),Y(0)) ∈ D there exists a unique maximal solution Y(x) ⊂ D of the problem (1).
Moreover, if D = I ×Rn, then the unique maximal solution is defined on the whole interval I.

For a linear system (2) the following holds:

Let all functions gij(x) be continuous on an interval I =< a, b >. Then the assumptions of Theorem 1
are satisfied in D = I×Rn with L = max

x∈I
|gij(x)|, so the unique maximal solution is defined on the whole

interval I.

The Lipschitz condition (3) can be interpreted as requiring a little more than continuity but a little
less than differentiability:

Theorem 2

Let functions fi be continuous in some region D defined by a ≤ x ≤ b, aj < yj < bj for j = 1, . . . n, and
let fi have also continuous partial derivatives with respect to yj , j = 1, . . . , n there.

Then the inequality (3) is satisfied in D with L = sup
D
‖ ∂fi
∂yj
‖ and if L <∞, then the assumptions

of Theorem 1 hold in D.

Throughout the text, we assume that the problem (1) satisfies the assumptions of Theorem 1 in some
region D and (x(0),Y(0)) ∈ D.

It also implicates that the problem is well-posed, which means (roughly speaking) that it’s solution
depends continuously on the given data: that a small perturbation of F or Y(0) leads to a small change
of the solution.
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General one-step method

In this text we consider one-step methods only, which have a form of

Y(k+1) = Y(k) + h Φ(Y(k),Y(k+1), xk , h) , (4)

where h is the step-size, xk = x0 + k h and Y(k) is the numerical approximation of the exact solution
Y(xk) of the problem (1).

Examples of one-step methods:

• Explicit Euler method: Φ(Y(k),Y(k+1), xk , h) = F(xk ,Y
(k))

• Implicit Euler method: Φ(Y(k),Y(k+1), xk , h) = F(xk + h ,Y(k+1))

• Collatz (or midpoint) method: Φ(Y(k),Y(k+1), xk , h) = F(xk + h
2 ,Y

(k) + h
2 F(xk ,Y

(k)))

Convergence, consistency, stability

consistency

differential equation ←−−−−−−−−−−−−−−−−−−−−→ discretized equation

| |
| |

exist. and uniq. of solution stability
| |
↓ convergence ↓

exact solution ←−−−−−−−−−−−−−−−−−−−−→ numerical solution

Convergence

The numerical solution should approach the exact one (converge to it) as the mesh-size tends to zero:

max
k
‖Y(k) −Y(xk)‖ → 0 as h→ 0

Global discretization error at xk:
ek = ‖Y(k) −Y(xk)‖ (5)

The method is of p-th order of accuracy, if some norm of a vector of the global discretization

errors ‖e‖ = ‖(e1, . . . en)T ‖ is O(hp).

Local error at xk+1 (for one-step method):

Ek+1 = ‖Y(k+1) − Ŷ(xk+1)‖ = ‖Y(k) + h Φ(Y(k),Y(k+1), xk , h) − Ŷ(xk+1)‖ , (6)

where Ŷ(xk+1) is the value of the exact solution for initial condition Ŷ(xk) = Y(k).

Consistency of discretized equation with differential equation

The discretization of the differential equation should become exact, as the mesh-size tends to zero.
Consistency error (for one-step method):

ηk =

∥∥∥∥ Y(xk+1)−Y(xk)

h
− Φ(Y(xk),Y(xk+1), xk , h)

∥∥∥∥ (7)

– error in discretized equation, if exact solution evaluated at mesh-points is substituted into it. It measures
the extent to which the true solution satisfies the discrete equation. Consistency errors should vanish, as
the mesh-size tends to zero.
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Stability

Numerical errors that are generated as a consequence of using discretized equation, should be held under
control. There are several different definitions of stability which put this idea into more specific terms.

Lax equivalence theorem

For linear well-posed initial value problem and consistent finite difference approximation of it,
stability is necessary and sufficient condition for convergence.

Note: for nonlinear problems this equivalence does not hold. However, we probably cannot expect good
behaviour of any method which is not convergent for linear problems, so consistency and stability of
methods are important even if nonlinear problems are solved, when these two properties cannot guarantee
convergency.

Examples

The theory will be illustrated on a scalar equation as the simplest case of the system (1):

y′(x) = f(x, y(x)) , y(x0) = y(0) . (8)

1. Analysis of explicit Euler method y(k+1) = y(k) + h f(xk, y
(k))

Convergence

Local error (6) at xk+1 is Ek+1 = ‖ y(k) + h f(xk, y
(k)) − ŷ(xk+1)‖ ,

where ŷ(xk+1) is the value of the exact solution for initial condition ŷ(xk) = y(k).

Taylor expansion for ŷ(xk+1) and using y′(x) = f(x, y(x)) and ŷ(xk) = y(k) gives

ŷ(xk+1) ≡ ŷ(xk + h) = ŷ(xk) + h ŷ ′(xk) +O(h2) = y(k) + h f(xk, y
(k)) +O(h2)

and after substitution we have

Ek+1 = ‖ y(k) + h f(xk, y
(k)) − ( y(k) + h f(xk, y

(k)) +O(h2) )‖ = O(h2) .

Global error (5) at xk+1 is ek+1 = ‖ y(k+1) − y(xk+1)‖ .

(a) y(xk+1) = y(xk) + h y′(xk) +O(h2) . . . Taylor expansion of exact solution

(b) y(k+1) = y(k) + h f(xk, y
(k)) . . . Euler method

(a) - (b):

y(xk+1)− y(k+1) = y(xk)− y(k) + h (f(xk, y(xk))− f(xk, y
(k))) +O(h2)

ek+1 ≤ ek + h ‖f(xk, y(xk))− f(xk, y
(k))‖+ c h2 for some c ∈ R.

The second term at the right hand side can be bounded using Lipschitz condition (3) as

‖f(xk, y(xk))− f(xk, y
(k))‖ ≤ L ‖y(xk)− y(k)‖ = Lek , and so ek+1 ≤ ek (1 + hL) + c h2 .

By recursion and using notation a = (1 + hL) it follows

e1 ≤ c h2 (the local error at the first step)
e2 ≤ e1 a+ c h2 ≤ a c h2 + c h2 = (a+ 1) c h2

e3 ≤ e2 a+ c h2 ≤ (a+ 1) c h2 a+ c h2 = (a2 + a+ 1) c h2

. . .
en ≤ (an−1 + . . . a2 + a+ 1) c h2 = an−1

a−1 c h2 = (1+hL)n−1
L c h ≤ (eLhn − 1) 1

L c h

from which it follows that the global error is O(h) if hn = |x0 − xn| is constant, i. e.,
if we consider some bounded interval only.
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Consistency

Consistency error (7) is

ηk =

∥∥∥∥ y(xk+1)− y(xk)

h
− f(xk, y(xk))

∥∥∥∥
Taylor expansion gives

y(xk+1) ≡ y(xk + h) = y(xk) + h y′(xk) +O(h2) = y(xk) + h f(xk, y(xk)) +O(h2)

so y(xk+1)− y(xk) = h f(xk, y(xk)) +O(h2) and after substitution we have

ηk =

∥∥∥∥ h f(xk, y(xk)) +O(h2)

h
− f(xk, y(xk))

∥∥∥∥ = ‖ f(xk, y(xk)) +O(h)− f(xk, y(xk)) ‖ = O(h) ,

which converges to zero as h→ 0.

Stability

Stability will be studied only on a standard model equation

y′(x) = −a y(x) , y(x0) = y(0) , a > 0 (9)

However, if a method is not stable on this simple linear equation, we probably cannot expect its
good behaviour on other equations, too.

The exact solution of equation (9) is e−a(x−x0), which tends to zero as x→∞.

Euler method:

y(k+1) = y(k) + h(−a y(k)) = (1− h a) y(k) = (1− h a)2 y(k−1) = · · · = (1− h a)k+1 y(0)

y(k+1) converges to zero if and only if the modulus of the growth factor (1− h a) is less than 1,
which means |ha| < 2 (for 1 < |ha| < 2 it alternates sign, however it is stable).

So explicit Euler method is only conditionally stable, see Figure 1.

conditional stability:

• existence of a critical time step beyond which numerical instabilities occur,

• is typical for explicit methods

Figure 1: Problem y′ = −10 y , y(1) = 0.1 solved by explicit Euler method. Black line: exact solution,
green line: numerical solution with h = 0.08, red line: numerical solution with h = 0.21. Blue arrows at
background represent directional field for the given equation.
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2. Stability of implicit Euler method

studied only on a standard model equation (9)

y′(x) = −a y(x) , y(x0) = y(0) , a > 0.

Implicit Euler method: y(k+1) = y(k) + h(−a y(k+1)) and for y(k+1) the explicit formula is obtained

y(k+1) =
1

1 + ha
y(k) =

(
1

1 + ha

)2

y(k−1) = · · · =
(

1

1 + ha

)k+1

y(0)

y(k+1) converges to zero for any choice of h, because the growth factor is allways less than 1 and
implicit Euler method is unconditionally stable. This is typical behaviour of other implicit methods, too.
Compare Figures 1 and 2 – the same problem is solved by explicit (Fig. 1) or implicit (Fig. 2) method.

Figure 2: Problem y′ = −10 y , y(1) = 0.1 solved by implicit Euler method. Black line: exact solution,
red line: numerical solution with h = 0.21. Blue arrows at background represent directional field for the
given equation.

3. Local error of Collatz method

Local error (6) at xk+1 is Ek+1 = ‖ y(k) + h f(xk + 1
2 h, y

(k) + 1
2 h f(xk, y

(k))) − ŷ(xk+1)‖ ,

where ŷ(xk+1) is the value of the exact solution for initial condition ŷ(xk) = y(k).

Taylor expansion for ŷ(xk+1) gives

ŷ(xk+1) ≡ ŷ(xk + h) = ŷ(xk) + h ŷ ′(xk) + 1
2 h

2 ŷ ′′(xk) +O(h3) ,

then substitute y′(x) = f(x, y(x)) and y′′(x) =
d

dx
f =

∂f

∂x

dx

dx
+
∂f

∂y

dy

dx
=
∂f

∂x
+
∂f

∂y
f (chain rule),

to obtain

ŷ(xk+1) = ŷ(xk) + h f(xk, ŷ(xk)) + 1
2 h

2

[
∂f

∂x
(xk, ŷ(xk)) +

∂f

∂y
(xk, ŷ(xk)) f(xk, ŷ(xk))

]
+O(h3) =

= ŷ(xk) + h

[
f(xk, ŷ(xk)) +

∂f

∂x
(xk, ŷ(xk)) 1

2 h+
∂f

∂y
(xk, ŷ(x)) 1

2 h f(xk, ŷ(xk))

]
+O(h3).

Now compare the term in the brackets with the right hand side of the Taylor expansion

f(xk + h1, ŷ(xk) + h2) = f(xk, ŷ(xk)) +
∂f

∂x
(xk, ŷ(xk))h1 +

∂f

∂y
(xk, ŷ(x))h2 +O(h21 + h1h2 + h22)

– choice h1 = 1
2 h and h2 = 1

2 h f(xk, ŷ(xk)) enables replacing that term by

f(xk + h1, ŷ(xk) + h2) +O(h2), which after substitution of ŷ(xk) = y(k) and rearranging leads to
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ŷ(xk+1) = y(k) + h
[
f(xk + h1, y

(k) + h2) +O(h2)
]

+O(h3) =

= y(k) + h f(xk + 1
2 h, y

(k) + 1
2 h f(xk, ŷ(xk)) +O(h3) ,

Ek+1 = ‖ y(k)+ h f(xk+ 1
2 h, y

(k)+ 1
2 h f(xk, y

(k))) −( y(k)+h f(xk+h1, y
(k)+h2)+O(h3) )‖ = O(h3)

.

The local error of Collatz method is O(h3). It can be shown that global error of Collatz method
is O(h2), using similar technique as for explicit Euler method.

4. Consistency of one-step method

Consistency error (7) is

ηk =

∥∥∥∥ y(xk+1)− y(xk)

h
− Φ( y(xk), y(xk+1), xk , h)

∥∥∥∥ ,
the limit of the first term is lim

h→0

y(xk+1)−y(xk)
h = y′(xk) = f(xk, y(xk)), so the consistency error

tends to zero if and only if lim
h→0

Φ( y(xk), y(xk+1), xk , h) = f(xk, y(xk)) for all xk.
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